44 research outputs found

    Experimental generation and characterization of single-photon hybrid ququarts based on polarization-orbital angular momentum encoding

    Full text link
    High-dimensional quantum states, or qudits, represent a promising resource in the quantum information field. Here we present the experimental generation of four-dimensional quantum states, or ququarts, encoded in the polarization and orbital angular momentum of a single photon. Our novel technique, based on the q-plate device, allows to prepare and measure the ququart in all five mutually unbiased bases. We report the reconstruction of the four dimensional density matrix through the tomographic procedure for different ququart states.Comment: 7 pages, 5 figure

    Experimental Detection of Quantum Channels

    Full text link
    We demonstrate experimentally the possibility of efficiently detecting properties of quantum channels and quantum gates. The optimal detection scheme is first achieved for non entanglement breaking channels of the depolarizing form and is based on the generation and detection of polarized entangled photons. We then demonstrate channel detection for non separable maps by considering the CNOT gate and employing two-photon hyperentangled states.Comment: 8 pages, 9 figure

    Two-particle bosonic-fermionic quantum walk via 3D integrated photonics

    Full text link
    Quantum walk represents one of the most promising resources for the simulation of physical quantum systems, and has also emerged as an alternative to the standard circuit model for quantum computing. Up to now the experimental implementations have been restricted to single particle quantum walk, while very recently the quantum walks of two identical photons have been reported. Here, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and integrated photonic circuits. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement.Comment: 4 pages, 5 figures + supplementary informatio

    Integrated optical waveplates for arbitrary operations on polarization-encoded single-qubits

    Get PDF
    Integrated photonic technologies applied to quantum optics have recently enabled a wealth of breakthrough experiments in several quantum information areas. Path encoding was initially used to demonstrate operations on single or multiple qubits. However, a polarization encoding approach is often simpler and more effective. Two-qubits integrated logic gates as well as complex interferometric structures have been successfully demonstrated exploiting polarization encoding in femtosecond-laser-written photonic circuits. Still, integrated devices performing single-qubit rotations are missing. Here we demonstrate waveguide-based waveplates, fabricated by femtosecond laser pulses, capable to effectively produce arbitrary single-qubit operations in the polarization encoding. By exploiting these novel components we fabricate and test a compact device for the quantum state tomography of two polarization-entangled photons. The integrated optical waveplates complete the toolbox required for a full manipulation of polarization-encoded qubits on-chip, disclosing new scenarios for integrated quantum computation, sensing and simulation, and possibly finding application also in standard photonic devices
    corecore